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List of Applications - I

❏ Blind multiuser detection-estimation in DS-CDMA, using Rx

antenna array

❏ Multiple-invariance sensor array processing (MI-SAP)

❏ Joint detection-estimation in SIMO/MIMO OFDM systems subject

to CFO, using receive diversity

❏ Multi-dimensional harmonic retrieval w/ applications in DOA

estimation and wireless channel sounding

❏ Blind decoding of a class of linear space-time codes

❏ 3-D Radar clutter modeling and mitigation

❏ Exploratory data analysis: clustering, scatter plots, multi-dimensional

scaling
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List of Applications - II

❏ Joint diagonalization problems (symmetric):

i) Blind spatial signature estimation from covariance matrices, using

time-varying power loading, spectral color / multiple lags

ii) Blind source separation for multi-channel speech signals

iii) ACMA

❏ HOS-based parameter estimation and signal separation

(“super-symmetric”)

❏ Analysis of individual differences (Psychology)

❏ Chromatography, spectroscopy, magnetic resonance, ...
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Three-Way Arrays

❏ Two-way arrays, AKA matrices: X := [xi, j] : (I × J)

❏ Three-way arrays: [xi, j,k] : (I × J×K)

❏ CDMA w/ Rx Ant array @ baseband: chip × symbol × antenna

❏ MI SAP: subarray × element × snapshot

❏ Multiuser MIMO-OFDM: antenna × FFT bin × symbol

❏ Spectroscopy, NMR, Radar, analysis of food attributes (judge ×

attribute × sample), personality traits ...
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Three-Way vs Two-Way Arrays - Similarities

❏ Rank := smallest number of rank-one “factors” (“terms” is probably

better) for exact additive decomposition (same concept for both

2-way and 3-way)

❏ Two-way rank-one factor: rank-one MATRIX outer product of 2

vectors (containing all double products)

❏ Three-way rank-one factor: rank-one 3-WAY ARRAY outer product

of 3 vectors (containing all triple products) - same concept
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Three-Way vs Two-Way Arrays - Differences

❏ Two-way (I × J): row-rank = column-rank = rank ≤ min(I,J);

❏ Three-way: row-rank 6= column-rank 6= “tube”-rank 6= rank

❏ Two-way: rank(randn(I,J))=min(I,J) w.p. 1;

❏ Three-way: rank(randn(2,2,2)) is a RV (2 w.p. 0.3, 3 w.p. 0.7)

❏ 2-way: rank insensitive to whether or not underlying field is open or

closed (IR versus C); 3-way: rank sensitive to IR versus C

❏ 3-way: Except for loose bounds and special cases [Kruskal; J.M.F.

ten Berge], general results for maximal rank and typical rank sorely

missing for decomposition over IR; theory more developed for

decomposition over C [Burgisser, Clausen, Shokrollahi, Algebraic

complexity theory, Springer, Berlin, 1997]
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Khatri-Rao Product

☞ Column-wise Kronecker Product:
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vec(ADBT ) = (B�A)d(D)

A� (B�C) = (A�B)�C
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LRD of Three-Way Arrays: Notation

• Scalar:

xi, j,k =
F

∑
f =1

ai, f b j, f ck, f , i = 1, · · · , I, j = 1, · · · ,J, k = 1, · · · ,K

• Slabs:
Xk = ADk(C)BT

, k = 1, · · · ,K

• Matrix:
X(KJ×I) = (B�C)AT

• Vector:

x(KJI) := vec
(

X(KJ×I)
)

= (A� (B�C))1F×1 = (A�B�C)1F×1
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LRD of N-Way Arrays: Notation

• Scalar:

xi1,··· ,iN =
F

∑
f =1

N

∏
n=1

a(n)
in, f

• Matrix:

X(I1I2···IN−1×IN) =
(

A(N−1) �A(N−2) �·· ·�A(1)
)(

A(N)
)T

• Vector:
x(I1···IN) := vec

(

X(I1I2···IN−1×IN)
)

=

(

A(N) �A(N−1) �A(N−2) �·· ·�A(1)
)

1F×1
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Closer look at applications: Data modeling

❏ CDMA: (i, j,k, f ): (Rx antenna, symbol snapshot, chip, user)

xi, j,k =
F

∑
f =1

ai, f b j, f ck, f , i = 1, · · · , I, j = 1, · · · ,J, k = 1, · · · ,K

❏ MI-SAP: A is response of reference subarray, BT is temporal signal

matrix (usually denoted S), Dk(C) holds the phase shifts for the k-th

displaced but otherwise identical subarray:

Xk = ADk(C)BT
, k = 1, · · · ,K

❏ Blind signature estimation from covariance data: Symmetric

PARAFAC/CANDECOMP (INDSCAL):

Rk = ADk(P)AH
, k = 1, · · · ,K
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Early Take-Home Point

C
O

D
E

STEERING

SYMBOL

+=X

X = +

☞ Fact 1: Low-rank matrix (2-way array) decomposition not unique

for rank > 1

☞ Fact 2: Low-rank 3- and higher-way array decomposition (PARAFAC)

is unique under certain conditions
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LRD of Matrices: Rotational Indeterminacy

X = ABT = a1bT
1 + · · ·+arXbT

rX

xi, j =
rX

∑
k=1

ai,kb j,k

=  +  + 

+ +  += 

+ 
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Reverse engineering of soup?

☞ Can only guess recipe
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Sample from two or more Cooks!

☞ Same ingredients, different proportions ↪→ recipe!
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SIMO OFDM / CFO

❏ Collect K OFDM symbol snapshots

Yi = PFHHi(QS)T +Wi =: ADiBT +Wi, i = 1, · · · , I

❏ PARAFAC model (w/ special structure) =⇒ blindly identifiable

[Jiang & Sidiropoulos, ’02]

❏ Deterministic approach, works with small sample sizes (channel

coherence), relaxed ID conditions, performance within 2 dB from

non-blind MMSE clairvoyant Rx
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SIMO-OFDM / CFO - results
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Uniqueness

= +X

☞ [Kruskal, 1977], N = 3, IR: kA + kB + kC ≥ 2F +2

k-rank= maximum r such that every r columns are linearly independent

(≤ rank)

☞ [Sidiropoulos et al, IEEE TSP, 2000]: N = 3, C

☞ [Sidiropoulos & Bro, J. Chem., 2000]: any N, C:

∑N
n=1 k− ranks ≥ 2F +(N −1)
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Key-I

☞ Kruskal’s Permutation Lemma [Kruskal, 1977]: Consider A (I×F)

having no zero column, and Ā (I × F̄). Let w(·) be the weight (# of

nonzero elements) of its argument. If for any vector x such that

w(xHĀ) ≤ F − rĀ +1,

we have

w(xHA) ≤ w(xHĀ),

then F ≤ F̄ ; if also F ≥ F̄ , then F = F̄ , and there exist a permutation

matrix P and a non-singular diagonal matrix D such that A = ĀPD.

☞ Easy to show for a pair of square nonsingular matrices (use rows of

pinv); but the result is very deep and difficult for fat matrices - see [Jiang

& Sidiropoulos, TSP:04]
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Key-II

☞ Property: [Sidiropoulos & Liu, 1999; Sidiropoulos & Bro, 2000]

If kA ≥ 1 and kB ≥ 1, then it holds that

kB�A ≥ min(kA + kB −1,F),

whereas if kA = 0 or kB = 0

kB�A = 0
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Stepping stone

☞ A proof of Kruskal’s result is beyond our scope. The following is more

palatable & conveys flavor (see SAM2004 paper for compact proof):

Theorem: Given X = (A,B,C), with A : I ×F , B : J×F , and

C : K ×F , it is necessary for uniqueness of A, B, C that

min(rA�B,rC�A,rB�C) = F . If F > 1, then it is also necessary that

min(kA,kB,kC) ≥ 2.

If, in addition rC = F , and kA + kB ≥ F +2, then A, B, and C are unique

up to permutation and scaling of columns, meaning that if X = (Ā, B̄, C̄),

for some Ā : I ×F , B̄ : J×F , and C̄ : K ×F , then there exists a

permutation matrix Π and diagonal scaling matrices Λ1,Λ2,Λ3 such that

Ā = AΠΛ1, B̄ = BΠΛ2, C̄ = CΠΛ3, Λ1Λ2Λ3 = I.
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Is Kruskal’s Condition Necessary?

❏ Long-held conjecture (Kruskal’89): Yes

❏ ten Berge & Sidiropoulos, Psychometrika, 2002: Yes for F ∈ {2,3},

no for F > 3

❏ Jiang & Sidiropoulos ’03: new insights that explain part of the

puzzle: E.g., for rC = F , the following condition has been proven to

be necessary and sufficient:

No linear combination of two or more columns of A�B
can be written as KRP of two vectors
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Why Care?

☞ So, LRD for 3- or higher-way arrays unique, provided rank is
”low enough”; often works for rank >> 1

❏ In CDMA application, each user contributes a rank-1 factor

❏ In MI-SAP application, each source contributes a rank-1 factor

❏ In multiuser MIMO-OFDM, each Tx antenna contributes rank-1

factor

❏ Hence if the number of users/sources/Tx is not too big, completely

blind identification is possible

❏ Resulting ID conditions beat anything published to date
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Algorithms

❏ SVD/EVD or TLS 2-slab solution (similar to ESPRIT) in some cases

(but conditions for this to work are restrictive)

❏ Workhorse: ALS [Harshman, 1970]: LS-driven (ML for AWGN),

iterative, initialized using 2-slab solution or multiple random cold

starts

❏ ALS −→ monotone convergence, usually to global minimum

(uniqueness), close to CRB for F << IJK
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Algorithms

❏ ALS is based on matrix view:

X(KJ×I) = (B�C)AT

❏ Given interim estimates of B, C, solve for conditional LS update of

A:

ACLS =
(

(B�C)†X(KJ×I)
)T

❏ Similarly for the CLS updates of B, C (symmetry); repeat in a

circular fashion until convergence in fit (guaranteed)
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Algorithms

❏ ALS initialization matters, not crucial for heavily over-determined

problems

❏ Alt: rank-1 updates possible [Kroonenberg], but inferior

❏ COMFAC (Tucker3 compression), G-N, Levenberg, ATLD, DTLD,

ESPRIT-like,...

❏ G-N converges faster than ALS, but it may fail

❏ In general, no ”algebraic” solution like SVD

❏ Possible if e.g., a subset of columns in A is known [Jiang &

Sidiropoulos, JASP/SMART 2003]; or under very restrictive rank

conditions
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Robust Regression Algorithms

❏ Laplacian, Cauchy-distributed errors, outliers

❏ Least Absolute Error (LAE) criterion: optimal (ML) for Laplacian,

robust across α-stable

❏ Similar to ALS, each conditional matrix update can be shown

equivalent to a LP problem −→ alternating LP [Vorobyov, Rong,

Sidiropoulos, Gershman, 2003]

❏ Alternatively, very simple element-wise updating using weighted

median filtering [Vorobyov, Rong, Sidiropoulos, Gershman, 2003]

❏ Robust algorithms perform well for Laplacian, Cauchy, and not far

from optimal in the Gaussian case
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CRBs for the PARAFAC model

❏ Dependent on how scale-permutation ambiguity is resolved

❏ Real i.i.d. Gaussian, 3-way, Complex circularly symmetric i.i.d.

Gaussian, 3-way & 4-way [Liu & Sidiropoulos, TSP 2001]

❏ Compact expressions for complex 3-way case & asymptotic CRB

when one mode length goes to infinity [Jiang & Sidiropoulos,

JASP/SMART:04]

❏ Laplacian, Cauchy [Vorobyov, Rong, Sidiropoulos, Gershman,

TSP:04] - scaled versions of the Gaussian CRB; scaling parameter

only dependent on noise pdf
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Performance
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Figure 1: RMSEs versus SNR: Gaussian noise, 8×8×20, F = 2

30



TUC & UMN Nikos Sidiropoulos / SAM 2004, July 18-21, 2004, Sitges, Barcelona, Spain'

&

$

%

Performance
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Figure 2: RMSEs versus SNR: Cauchy noise, 8×8×20, F = 2
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Performance

☞ ALS works well in AWGN because it is ML-driven, and with 3-way

data it is easy to get to the large-samples regime: e.g.,

10×10×10 = 1000

☞ Performance is worse (and further from the CRB) when operating

close to the identifiability boundary; but ALS works under model

identifiability conditions only, which means that at high SNR the

parameter estimates are still accurate

☞ Main shortcoming of ALS and related algorithms is the high

computational cost

☞ For difficult datasets, so-called swamps are possible: progress towards

convergence becomes extremely slow

☞ Still workhorse, after all these years ...
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Learn more - tutorials, bibliography, papers, software,...

❏ Group homepage (Nikos Sidiropoulos):
www.telecom.tuc.gr/˜nikos and

www.ece.umn.edu/users/nikos

❏ 3-way group at KVL/DK (Rasmus Bro):
http://www.models.kvl.dk/users/rasmus/ and

http://www.models.kvl.dk/courses/

❏ 3-Mode Company (Peter Kroonenburg):
http://www.leidenuniv.nl/fsw/three-mode/3modecy.htm

❏ Hard-to-find original papers (Richard Harshman):
http://publish.uwo.ca/˜harshman/

❏ 3-way workshop: TRICAP 2000: Faaborg, DK; 2003, Kentucky, USA;

2006, Chania-Crete Greece.
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What lies ahead & wrap-up

❏ Take home point: (N > 3)-way arrays are different; low-rank

models unique, have many applications

❏ Major challenges: Uniqueness: i) Easy to check necessary &

sufficient conditions; ii) Higher-way models; iii) Uniqueness under

application-specific constraints (e.g., Toeplitz); iv) symmetric &

super-symmetric models (INDSCAL, JD, HOS)

❏ Major challenges: Algorithms: Faster at small performance loss;

incorporation of application-specific constraints

❏ New exciting applications: Yours!
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Preaching the Gospel of 3-Way Analysis

☞ Thank you!
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